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Topological chaos may be used to generate highly effective laminar mixing in a simple
batch stirring device. Boyland, Aref & Stremler (2000) have computed a material
stretch rate that holds in a chaotic flow, provided it has appropriate topological
properties, irrespective of the details of the flow. Their theoretical approach, while
widely applicable, cannot predict the size of the region in which this stretch rate
is achieved. Here, we present numerical simulations to support the observation of
Boyland et al. that the region of high stretch is comparable with that through which
the stirring elements move during operation of the device. We describe a fast technique
for computing the velocity field for either inviscid, irrotational or highly viscous flow,
which enables accurate numerical simulation of dye advection. We calculate material
stretch rates, and find close agreement with those of Boyland et al., irrespective of
whether the fluid is modelled as inviscid or viscous, even though there are significant
differences between the flow fields generated in the two cases.

1. Introduction
Static and dynamic mixing devices are important in many industries, e.g. food

production (Prakash & Kokini 2000), controllable manufacture of polymer blends
and composites (Zumbrunnen & Inamdar 2001), and biological scenarios, such as
ventilation (Butler & Tsuda 1997) and digestion (Macagno & Christensen 1980).
However, techniques for understanding or producing effective fluid mixers, while
highly advanced, remain far from complete, for three reasons: theories of chaos
and turbulence are themselves incomplete; well-resolved numerical simulation of the
intricacies of mixing remains a significant computational challenge; and accurate
expressions for the flow field in practical stirring devices are rare.

A significant recent theoretical advance concerns the concept of ‘topological chaos’
(Ricca & Berger 1996; Boyland, Aref & Stremler 2000; MacKay 2001; Boyland 2002;
Boyland, Stremler & Aref 2003): without reference to any computation or exact
flow details, Boyland et al. (2000) have demonstrated, in an unusual blend of ad hoc
experimentation and abstract mathematics, that flows with the topology of certain
braids achieve a material stretch rate which can be determined quantitatively, given
only the topology of the flow. However, a key feature not predicted by their theoretical
considerations is the size of the domain in which this stretch rate is attained. Indeed,
according to the theory, this domain may have measure zero, and if this were the
case then the theory would have little practical impact. Here we provide numerical
results that support the observations of Boyland et al., that the chaotic region is
in fact commensurate with the region of fluid through which the stirring elements
move during operation of the device. We should make clear at the outset that we
use the terminology ‘topological chaos’ in the same sense as Boyland et al. (2000), to
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mean ‘complexity that cannot be removed by continuous deformations of the shape
of the fluid region, or by continuous modification in the actual trajectories of the
stirrers’, and not in the sense of ‘strong topological mixing’ from ergodic theory, for
example (Pollicott & Yuri 1998). By adopting such usage consistently, we hope that
no confusion can arise. We furthermore note that the definition of how one should
measure the quality of mixing achieved by a fluid flow is by no means unique – we
shall compute the stretch rate of a finite material line, but many other measures are
routinely used, including measurement of the degree of chaotic motion in the Poincaré
section (Aref & Balachandar 1986; Jones, Thomas & Aref 1989), the calculation of
Liapunov exponents (Muzzio & Swanson 1991), the return percentage of diffusive
tracer particles (Aref & Jones 1989), the growth rate of intermaterial density (Muzzio
et al. 1999; Giona & Adrover 2001), and the distribution of lamellae generated by
mixing a blob of fluid (Clifford, Cox & Roberts 1998, 2000; Metcalfe & Ottino 1994;
Muzzio & Ottino 1989, 1990; Sawyers, Sen & Chang 1996).

Of course, there are many devices in which excellent chaotic mixing can be achieved
without using topological chaos, however the mixing quality is measured: for analytical
and numerical convenience, most investigations have focused on the slow, Stokes
flow regime – examples for which the corresponding exact velocity field is known
include the translating rotating mixer (Finn & Cox 2001), the double journal bearing
flow (Jana, Metcalfe & Ottino 1994), the rotated arc mixer (Rudman et al. 2001),
and the partitioned pipe mixer (Kusch & Ottino 1992; Meleshko et al. 1999) used to
model the Kenics static mixer. However, for each of these devices, the quality of mixing
depends on a careful tuning of the system parameters. The concept of topological
chaos offers at least the prospect of building into a mixer design some lower bound on
mixing quality, but further investigation of the practicalities is required, as described
here.

In this paper we study a batch stirring device (BSD), in which an arbitrary number
of cylindrical rods of circular cross-section move independently to stir a fluid (Boyland
et al. 2000). In order to generate topological chaos in such a device, it is necessary
to have three or more stirring rods. The generation of a chaotic flow in a BSD with
fewer stirring rods is, of course, perfectly possible (Finn & Cox 2001), but ensuring
that the chaotic region is of substantial size relies on a tuning of the parameters. We
investigate below the extent to which increasing the number of stirring rods, and the
consequent introduction of topological chaos, improves the mixing.

We construct the velocity field for two-dimensional flow in the BSD, for either
an inviscid fluid or Stokes flow in a viscous fluid. When there is only a single
stirring element, it is possible to construct the exact velocity field for Stokes flow
in closed form (Finn & Cox 2001) using finitely many terms, by means of image
systems of singularities (Avudainayagam & Jothiram 1988; Sen 1989); however, we
have found that attempts to derive the corresponding velocity field with multiple
stirring elements lead to insurmountable analytical difficulties. The alternative series
solution adopted here is based on an approach due to Price, Mullin & Kobine (2003)
and L. N. Trefethen (personal communication). We construct series which converge
extremely rapidly, thus giving rise to excellent truncations for numerical purposes.
This technique is fast and easy to implement and allows accurate simulations of
chaotic advection. Vikhansky (2003) has computed some corresponding flows with
three stirring rods using the ‘immersed boundary method’: these illustrate the chaotic
motion of fluid particles in a BSD, but a corresponding level of accuracy is difficult to
achieve in his simulations, or indeed any which use a finite-element or finite-difference
approach.
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Figure 1. Geometry of the BSD. Here, x and y are Cartesian coordinates. Two-dimensional
flow is driven by m circular cylinders, each centred at z = pj (where z = x + iy), with radius
aj , translating with velocity (Uj , Vj ) and (for the viscous model only) rotating anticlockwise
about its axis with angular speed Ωj . The unit normal of the j th cylinder is nj . The fluid is
enclosed between the internal cylinders and an outer circular cylinder centred at z = 0, with
radius a.

The remainder of this paper is structured as follows. In § 2, we describe the BSD, and
our algorithm for calculating the corresponding velocity field. In § 3, we summarize
key results from the topological theory, and in § 4, we present numerical stirring
simulations which allow comparison with the abstract theory of Boyland et al. (2000).
Discussion of some practicalities of mixer design and conclusions are given in §§ 5,
and 6, respectively.

2. Mathematical models for the batch stirring device (BSD)
The BSD geometry (Boyland et al. 2000) is shown in figure 1. Flow is two-

dimensional, in the (x, y)-plane. We shall develop inviscid and viscous models for
the flow: in both it proves convenient to work with complex coordinates z = x + iy
and z̄ = x − iy, where x and y are Cartesian coordinates as indicated in the figure.
We assume that there are m infinitely long circular cylinders placed in the fluid, with
their axes at z =pj (t) and with radii aj (j = 1, . . . , m). Each cylinder may move
independently with a prescribed velocity Uj + iVj = dpj/dt and, in the case of the
viscous model only, may rotate about its axis with angular speed Ωj (t). The flow
domain is finite, the cylinders being enclosed in the region |z| � a. Mixing is achieved
by moving the m cylinders, and hence varying the geometry of the flow domain, in a
time-periodic fashion.

In order to simulate mixing numerically, we must track with high accuracy the
motion of inertialess tracer particles as they are advected with the fluid. It is therefore
advantageous to have available an exact expression for the fluid velocity field, which
allows evaluation of the velocity at an arbitrary point in the flow domain (rather
than, say, a finite-difference approximation, where some interpolation is, in general,
required). Unfortunately, for m > 1, such an exact expression is not available in closed
form, so instead we calculate series solutions whose coefficients are then determined
by computing the least-squared-error in the boundary conditions, subject to certain
constraints, detailed later. The series converge rapidly, and so only a small number
of terms need be taken in a numerical truncation.
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2.1. Inviscid irrotational model

Our first model for the BSD is of incompressible inviscid irrotational flow. Here, it
is most convenient to work with the complex potential w = φ + iψ , where φ and ψ

are, respectively, the velocity potential and streamfunction, the corresponding fluid
velocity field (u, v) being obtained from

u − iv =
dw

dz
. (2.1)

The boundary conditions on the internal cylinders are

(u, v) · nj = (Uj, Vj ) · nj on |z − pj | = aj (j = 1, . . . , m), (2.2)

where nj is the unit normal vector of the j th cylinder (see figure 1). We also impose
the no-penetration condition that

(u, v) · n = 0 on |z| = a, (2.3)

where n is the unit normal of the bounding cylinder.
We automatically satisfy (2.3) by using the Milne-Thomson circle theorem (Milne-

Thomson 1968; Acheson 1996), so that w takes the form

w = f (z) + f (a2/z̄), (2.4)

for some analytic function f (z).
Following Price et al. (2003), we seek a complex potential in the form

w =

m∑
j=1

{
bj,1 log(z − pj ) +

n∑
k=2

bj,k(z − pj )
1−k

}

+

m∑
j=1

{
b̄j,1(log(z − qj ) + log(−p̄j /a)) +

n∑
k=2

b̄j,k

(
a2

z
− p̄j

)1−k
}

, (2.5)

which is consistent with (2.4), and hence automatically satisfies (2.3), where qj = a2/p̄j

and the bj,k are mn complex constants. (The exact solution is obtained in the limit
n → ∞.) Since there is no net source of fluid inside any internal cylinder, each bj,1

is purely imaginary. Then, by the Kelvin circulation theorem, each bj,1 must remain
constant during the operation of the device; we choose bj,1 = 0, which corresponds to
starting the system from rest, although other fixed circulations could be imposed.

The coefficients bj,k are found by minimizing the squared error in the boundary
conditions (2.2) on the internal cylinders (Bourot 1969); recall that, by construction,
the condition (2.3) on the outer cylinder is satisfied automatically. A sample of
streamline plots for this model is shown in figure 2.

2.2. Viscous model

We now suppose that instead the BSD is filled with incompressible Newtonian
viscous fluid. We consider Stokes flow, at vanishing Reynolds number, so that the
streamfunction ψ(z, z̄) satisfies the biharmonic equation ∇4ψ = 0 (Lamb 1932), and
the velocity field may be obtained using

u + iv = −2i
∂ψ

∂z̄
. (2.6)

We aim to satisfy the no-slip boundary conditions

u + iv = Uj + iVj + iΩj (z − pj ) on |z − pj | = aj (j = 1, . . . , m) (2.7)
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Figure 2. Illustrative plots showing instantaneous streamlines for the inviscid (upper row)
and viscous (lower row) models. The two plots in each column correspond to identical cylinder
positions and velocities (with directions indicated by arrows), allowing the two flow regimes
to be compared. In each case, all cylinders have zero angular velocity about their respective
axes.

and

u + iv = 0 on |z| = a. (2.8)

Note that, in addition to the translational velocities of the stirring rods, their rotational
velocities now also influence the flow field. Although rotation of a rod about its axis
does not influence the topology of the flow, it does provide an additional degree of
freedom for tuning parameters to optimize mixing performance.

We can satisfy (2.8) automatically by using the circle theorem for the biharmonic
equation (Frazer 1925; Avudainayagam & Jothiram 1988; Sen 1989). Following Finn
& Cox (2001), we find that the appropriate streamfunction involves placing rotlet
and Stokeslet singularities, together with Laurent series, at the centre of each internal
cylinder, and then applying the circle theorem to give a streamfunction of the form

ψ =

m∑
j=1

{
bj,1

[
1
4
z̄ log

qj |z − pj |2
pj |z − qj |2 +

|z|2 − a2

4|pj |2|z − qj |2 (p̄j z̄(z + pj ) − a2(z̄ + p̄j ))

]

+

n∑
k=2

bj,k[z̄(z − pj )
1−k + ((pj + (k − 1)z)z̄ − a2k)(−pj )

−kz̄k(z̄ − q̄j )
−k]

}

+

m∑
j=1

{
cj,1

[
1
4
log

|qj ||z − pj |2
|pj ||z̄ − q̄j |2 +

(|z|2 − a2)(|z|2 − |qj |2)
4a2|z − qj |2

]

+

n∑
k=2

cj,k[(z − pj )
1−k + ((pj + (k − 1)z)z̄ − a2k)(−pj )

−kz̄k−1(z̄ − q̄j )
−k]

}

+ c.c., (2.9)

where c.c. denotes the complex conjugate of all preceding terms. In order to avoid a



350 M. D. Finn, S. M. Cox and H. M. Byrne

singularity at the origin, we impose the constraint

Im

m∑
j=1

cj,1 = 0. (2.10)

As in § 2.1, the coefficients (here bj,k and cj,k) may be determined by minimizing the
squared error in (2.6), subject to (2.9); see figure 2.

2.3. Features of the inviscid and viscous models

Typical streamline plots for the BSD using the inviscid and viscous models and with
up to five stirring rods are shown in figure 2. It is not our intention here to undertake
a discussion of all possible flow topologies (see Price et al. 2003 for such a discussion
with m = 2); however, we make some general remarks.

We note that there are two main differences between the inviscid and viscous
streamline plots. First, in the inviscid case, the fluid motion is more localized, because
the fluid slips around the moving cylinders; by contrast, the corresponding viscous
fluid motion is more uniform, with the fluid speed being of the same order over much
of the domain. One consequence of this difference is that material stretching in the
inviscid BSD is also more localized than in the viscous BSD; consequently, it is more
problematic to perform accurate numerical simulation of the advection of a fluid
interface, for example, in the inviscid case. The second significant difference between
the inviscid and viscous flows is the nature of the stagnation points. In an inviscid flow,
stationary points are always hyperbolic, because the streamfunction satisfies Laplace’s
equation, and so cannot have internal extrema, whereas the viscous streamfunction
satisfies the biharmonic equation, which allows both elliptic and hyperbolic stationary
points. So, while some broad features of the flow field are the same in both inviscid
and viscous models, it seems clear that if the internal cylinders execute a given motion
then the details of the streamlines for the two models will be quite different. This
underlines the remarkable nature of the results of Boyland et al. (2000), which depend
on the topology of the boundary motions, but not on the detailed flow field.

For the purpose of numerical simulations, we find that taking n = 10 terms reduces
the error in the velocity field (compared with an ‘exact’ solution obtained using
the ‘effectively infinite’ value n ≈ 15) below that introduced by time discretization,
described later. The limit of machine precision is typically reached with n ≈ 15
(working in Matlab, to 16 decimal places), and we find it straightforward to reduce
errors to O(10−9) before encountering conditioning difficulties with the least-squares
problem. By comparison, Vikhansky (2003) reports errors of O(10−4) for his finite-
difference immersed-boundary simulations, although his method has the significant
advantage of allowing extension to finite Reynolds number, which ours does not.

3. Theoretical background
In this section, we review some basics of braid notation, which provide a framework

for our subsequent analysis of stretch rates for flows in the BSD with various
topologies. We examine different ways of moving the internal cylinders (‘stirring
protocols’) and evaluate their effectiveness in stretching material line elements.

Chaotic flows are characterized by the exponential stretching in time of material
line elements, and the aim in previous studies of chaotic advection has often been to
maximize the stretch rate by appropriate selection of the system parameters. However,
the theoretical results of Boyland et al. (2000) yield a stretch rate generated by the
motion of m � 3 cylinders without explicit reference to the underlying equations
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Figure 3. Braid diagrams illustrating the exchange in position of two adjacent cylinders.
Neighbouring cylinders may interchange positions in either a clockwise or anticlockwise sense,
characterized by braid letters σi or σ −1

i , respectively. In the braid diagram corresponding to a
clockwise exchange σi , the (i + 1)th strand crosses over the ith strand, whereas for the braid
letter σ −1

i , the (i + 1)th strand crosses beneath the ith strand.

governing the fluid motion. It should be emphasized that, at present, the great
generality of the theory comes at a cost: the size of the region in which this stretch
rate is achieved is unknown, and typically depends on the governing fluid equations;
it may even have zero measure. It is our goal, therefore, to investigate the quality
of mixing due to various stirring protocols, according to the fluid models outlined
above, particularly noting the size of the chaotic region.

3.1. Braid notation

We assume that the stirring motion is periodic in time, with period T . At the
beginning and end of any period, the axes of the m internal cylinders lie on the
diameter y =0 of the outer cylinder. During the course of the stirring, pairs of
adjacent cylinders are interchanged. Boyland et al. (2000) have described how such
motion, when considered appropriately, has the topology of a physical braid on m

strings, which in turn corresponds to a mathematical braid (Tufillaro, Abbot & Reilly
1992). To see how the mathematical theory of braids may be applied to the mixing
problem, we begin by assigning to each interchange a braid letter σj or σ −1

j (see
figure 3). The subscript j indicates which two (adjacent) cylinders are interchanged,
from j = 1, which represents the left-most pair, to j = m − 1, which represents the
right-most pair. A superscript of −1 indicates that the cylinders orbit one another in
an anticlockwise sense; no superscript indicates a clockwise orbit.

The sequence of interchanges during one complete period is the stirring protocol,
and can be characterized by a braid word, which is a string of braid letters.
Interchanges are made corresponding to each braid letter in sequence, reading from
right to left. For example, the braid word σ1σ

−1
2 means that we first interchange

the second and third cylinders in an anticlockwise sense, then interchange the first
and second cylinders in a clockwise sense. A braid word may also be represented
schematically by a braid diagram, as shown in figure 3. Here, each line represents
one of the m internal cylinders and time progresses from the bottom to the top of
the diagram; each crossing of the lines represents an interchange of neighbouring
cylinders.

Once we have selected the stirring protocol and the paths that cylinders take during
their interchanges, we can simulate the corresponding fluid mixing, by tracking the
advection of passive tracer particles in the flow. Since the stirring protocol is repeated
periodically, it is efficient to store the series coefficients for the velocity field at
a large number of time steps, so that they can be computed just once, prior to
simulation. So it is significant that our method of solution is not only faster and
more accurate than alternative finite-element or finite-difference techniques, but it
also requires less storage: we need store only the series coefficients, rather than the
velocity field itself at a full set of grid points. Other model simplifications allow
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Figure 4. Braid diagrams and braid words for the five test protocols. Protocol A is ‘finite-order’
and does not have the correct topology to ensure effective stirring. Protocols B–E are
‘pseudo-Anosov’ and each have a (distinct) value of λtheory; these protocols illustrate all
possible values of this quantity that correspond to braid words of four letters.

us to reduce the computational and storage requirements further: if the cylinders
have equal radius and are placed symmetrically either side of the origin z = 0, and
if ‘reasonable’ interchanges are used, then reflectional and time-reversal symmetries
may be invoked, so that with m cylinders, only � 1

2
(m − 1)� ‘half-interchanges’ need be

calculated (where �ξ� means the least integer not less than ξ ).

3.2. Theoretical prediction of a material stretch rate

Using Thurston–Nielson theory, Boyland et al. (2000) have shown that the action of
each braid letter in a stirring protocol is intimately linked with a matrix derived from
its braid (Burau) matrix. In particular, for m = 3, a certain stretch rate given by the
stirring action of a particular braid letter is predicted by the spectral radius (magnitude
of the largest eigenvalue) of its associated matrix. The matrices corresponding to the
braid letters σ1, σ −1

1 , σ2, σ −1
2 are, respectively (Boyland et al. 2000),

s1 =

[
1 −1
0 1

]
, s−1

1 =

[
1 1
0 1

]
, s2 =

[
1 0
1 1

]
, s−1

2 =

[
1 0

−1 1

]
. (3.1)

The matrix corresponding to the action of a braid word may be found be taking the
matrix product of the component braid matrices, so that, for example, the protocol
σ1σ1σ

−1
2 σ −1

2 has the braid matrix

s1s1s
−1
2 s−1

2 =

[
1 −1
0 1

] [
1 −1
0 1

] [
1 0

−1 1

] [
1 0

−1 1

]
=

[
5 −2

−2 1

]
, (3.2)

which has spectral radius λtheory = 3 + 2
√

2. If the BSD is operated according to this
protocol, there is at least one material line whose length l(t) grows at least as rapidly
as

l(t)/l(0) ∼ λ
t/T

theory, (3.3)

where T is the period. According to the theory, only the flow topology matters,
and this is completely characterized by the braid word. The nature of the flow, for
example, whether it is inviscid or viscous, incompressible or compressible, does not
matter: while the stretch rate λtheory is the same in each case, the size and location of
the appropriate region in which the stretch rate is achieved depend on the details of
the flow.

Using the models from § 2, we are able to illustrate the predictions of Boyland et al.
(2000) in numerical simulations of both inviscid and viscous models for the BSD.
For the case m = 3, we have chosen five protocols, labelled A–E (see figure 4). Their
braid words contain four letters, but give rise to different values of λtheory (see table 1).
Protocol A is special because its braid is topologically equivalent to the ‘identity’
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Protocol Braid word λtheory λnum

A σ1σ1σ1σ2 — 2.2

B σ1σ
−1
2 σ −1

1 σ2
1
2
(3 +

√
5) ≈ 2.6 2.8

C σ1σ1σ1σ
−1
2

1
2
(5 +

√
21) ≈ 4.8 5.0

D σ1σ1σ
−1
2 σ −1

2 3 + 2
√

2 ≈ 5.8 5.8

E σ1σ
−1
2 σ1σ

−1
2

1
2
(7 + 3

√
5) ≈ 6.9 7.1

Table 1. Table of stretch rates for the five test protocols A–E. Indicated are λtheory, together
with numerical results λnum based on our viscous model.

a

2r 2r

2ain

Figure 5. The BSD geometry at the start of a period, illustrated for m= 3. The internal
cylinders all have radius ain, and are equally spaced along the line y = 0, configured
symmetrically. The distance between neighbouring cylinder axes is 2r . When two adjacent
cylinders are interchanged, they are moved along circular arcs of radius r centred on the
mid-point between the two cylinders, either clockwise or anticlockwise. The right-hand diagram
shows the initial position of the streak of dye.

braid, for which the crossings can be untied (see Boyland et al. 2000). Although
we expect it might stir effectively in practice if its physical parameters are chosen
appropriately, its braid matrix has complex eigenvalues, and so the topological theory
does not guarantee exponential stretching of a material interface. Protocols B–E have
non-trivial topology; in fact, they correspond to the four distinct values of λtheory that
can be generated by four-letter braid words.

4. Numerical simulations of dye advection
We have carried out numerical simulations of passive dye advection for protocols

A–E. Initially, the axes of the cylinders are equi-spaced along the line y = 0; the
cylinders are taken to be of equal radius, symmetrically placed about the origin,
with the axes of neighbouring cylinders separated by a distance 2r (see figure 5).
We investigate the parameter regime ain/a = 0.1 (where ain is the radius of each
cylinder) and r/a = 0.25. A streak of dye is initially placed along the perimeter of a
rectangle joining the four points with coordinates (±a/4, ±a/2), and is then advected
by the fluid. When two adjacent cylinders are interchanged, we move them along
circular arcs of radius r centred on the mid-point between their axes, so that the two
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A B C D E

Figure 6. Numerical dye-advection simulations of the five test protocols A–E in the inviscid
model. The protocols are labelled by column. The rows show the dye location after (from top
to bottom) 1, 2 and 3 periods of the flow.

cylinders remain at all times on opposite ends of a diameter. During this procedure,
the cylinders themselves do not rotate about their axes.

Results for the inviscid and viscous models of the BSD are shown in figures 6
and 7, respectively. One striking difference between the two sets of results is that
the inviscid flow generates structures that are less smooth than the viscous flow.
This feature is due to the greater localization of the inviscid flow. A second notable
feature is that the dye is taken to different parts of the flow domain in the two
models, most evidently for protocols C, D and E. Broadly speaking, the dyed fluid
is predominantly moved into the region y < 0 in the viscous model, whereas its
distribution is more symmetrical between upper and lower halves of the domain in
the inviscid case. An explanation for this feature can be found by examining the
velocity fields generated by the braid letters σ1 and σ −1

2 , of which the protocols C,
D and E are composed. Each of these braid letters involves either the leftmost or
the rightmost internal cylinder exchanging places with the central cylinder, with the
latter moving through the region y < 0 while the other moves through y > 0. We
find that in the viscous model, such a motion tends by entrainment to generate a net
motion of fluid in the central region in the negative y-direction and a net motion in
the positive y-direction along the outer cylinder wall. By contrast, there is no such
entrainment in the inviscid model. Thus, after a small number of stirring periods, the
dyed fluid, which is initially predominantly in the central region, is moved into the
region y < 0 in the viscous model, while there is no such marked drift in the inviscid
model, as seen in figures 6 and 7. If the motion were followed for a longer time, the
viscous dyed fluid would explore both y < 0 and y > 0. Indeed, this is demonstrated
in protocol C: we note that whereas protocols D and E involve σ1 and σ −1

2 in equal
measure, C involves predominantly σ1; these additional exchanges on the left-hand
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A B C D E

Figure 7. Numerical dye-advection simulations of the five test protocols A–E in the viscous
model. The protocols are labelled by column. The rows show the dye location after (from top
to bottom) 1, 2 and 3 periods of the flow.

side of the fluid domain can clearly be seen in figure 7 to have moved the fluid there
into both upper and lower halves of the domain.

Despite the significant qualitative differences between the locations of the stretched
dye-streaks in the two models, in each case the region of good mixing is eventually
commensurate with the entire region through which the internal cylinders are moved
(cf. Boyland et al. 2000).

We have computed the time variation in the length of the dye-streak, according to
the viscous model, and evaluated the corresponding stretch rate for each protocol;
our results are shown in table 1. If the length of the dye-streak is l(t) at time t , then
we define the numerical stretch rate λnum to be the best fit to the expression

λt/T
num = l(t)/l(0).

In tracking the exponentially growing dye-streak, we have used the dynamic particle
insertion algorithm of Krasnopolskaya et al. (1999) to ensure that it remains well
resolved. There is close agreement between λtheory and λnum. We interpret this as
indicating that the results of Boyland et al. (2000) are a good predictor of the
stretch rate of a finite material line (although clearly the possibility remains that
the agreement found here is fortuitous and that in other flows the agreement would
be less good). It should be noted that the initial dye-streak does not seem to lie
entirely in a chaotic region. Therefore, some section of it stretches subexponentially.
However, the influence of any such section on the value of λnum diminishes with time
(since it occupies an increasingly small fraction of the total length of the dye-streak).
Corresponding calculations of the stretch rate for the inviscid model are not presented,
because we have found it difficult to compute with accuracy the interface length in
this case, due to the highly localized stretching. Although we have less confidence in
the inviscid results, they yield stretch rates consistent with those given in table 1.
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Figure 8. Numerical dye-advection simulations in the viscous model with m= 3, under
motions corresponding to (σ1σ2)

p (left) and (σ −1
1 σ2)

p (right). Here ain/a = 0.043 and r/a = 0.17,
roughly in accordance with the experimental conditions of Boyland et al. (2000). Configuration
at (a) p = 0; (b) p = 1; (c) p = 2; (d) p = 3; (e) p = 4; (f ) p = 5; (g) p = 6 and (h) p = 9.

Finally, we present in figure 8 numerical simulations of the viscous model
corresponding to the experiments reported by Boyland et al. (2000). These results
may be compared with their figure 2, which shows the result of stirring by motions
(σ1σ2)

p and (σ −1
1 σ2)

p in our notation (respectively, f p and gp in their notation), for
p = 0, 1, 2, 3, 4, 5, 6, 9. The agreement between simulation and experiment is excellent.

5. Some practicalities of designing a batch stirring device
We now discuss some of the practicalities of building a mechanical BSD that

generates topological chaos. Although the use of robotics for moving the cylinders
would provide great flexibility, and allow the protocol to be changed easily, it is
feasible, and more straightforward, to achieve effective stirring topologies using simple
systems of gearing. For instance, with m = 3, only one cylinder need be moved to
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σ2
–1σ1

–1σ1
–1σ1

–1σ1
–1σ2

–1

Figure 9. A stirring protocol created by inserting two stationary cylindrical baffles into the
TRM (Finn & Cox 2001).

create an effective flow topology – the two remaining cylinders can be held stationary
as baffles, provided that the moving cylinder loops around them appropriately. This
significantly simplifies construction of the device, but it is not clear for general values
of m whether the flow topology with the greatest λtheory can always be achieved with
m − 1 stationary cylinders and one cylinder moving by means of simple gearing.

Specifically, in figure 9 we show a cycloidal path z = p1(t) for one of the cylinders
(radius ain = 0.1a), of the form

p1(t)/a = −0.1 + 0.2 exp(2πit/T ) + 0.5 exp(4πit/T ) (5.1)

(recall that z = p1(t) is the location of the axis of the cylinder at time t), which
can be generated using a simple gearing arrangement (Finn & Cox 2001). When the
BSD contains only one cylinder, we have elsewhere named it the translating rotating
mixer (TRM). By adding two further stationary cylindrical baffles, each of radius
ain = 0.05a, with axes fixed at p2 = −0.2a and p3 = 0.4a, we obtain a flow with the
topology of the braid σ −1

2 σ −1
1 σ −1

1 σ −1
1 σ −1

1 σ −1
2 (see figure 9); according to the theory

outlined in § 3.2, this protocol has λtheory = 3 + 2
√

2 ≈ 5.8. Despite the presence of
baffles leading to topological chaos (see figure 10), we find that λBSD

num only slightly
exceeds λTRM

num (by less than 10% in our viscous model).
Such a gain may be worthwhile provided the energy costs are not too great. We

therefore now consider the energy input required to operate the device in the viscous
model. We would expect the introduction of baffles into the TRM to increase its
energy consumption, and we now seek to quantify this effect. The force Fj exerted
by the j th cylinder on the fluid is readily determined to be 4πµibj,1 (Milne-Thomson
1968), and the moment Mj about the axis of the j th cylinder that it exerts on the
fluid is −4πµcj,1 − Im (Fj p̄j ), where µ is the dynamic viscosity of the fluid. The
corresponding force Fout and moment Mout about the origin exerted by the outer
cylinder on the fluid are

Fout = −4πµi

m∑
j=1

bj,1, Mout = 4πµ

m∑
j=1

cj,1. (5.2)

The total power input P to the BSD is then

P = MoutΩout +

m∑
j=1

(
Fx

jUj + Fy
jVj + MjΩj

)
. (5.3)
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Figure 10. Numerical dye-advection plots for the TRM (top row) and BSD (bottom row)
after 0, 1 and 2 periods. Apart from the presence of two additional stationary cylinders in the
BSD, the two stirring motions are otherwise identical (see figure 9).

Using these results, we calculate that approximately 400% more energy is required
with the baffles in place. The quantitative details of the improvement in stretch rate
and the excess energy consumption depend sensitively on the size and location of
the additional cylinders, and the balance between the two would form an interesting
future study. However, it is clear in this case that a marginal improvement in stretching
is obtained only at great energetic cost.

Three broader issues, related to the energetics of the BSD, would influence a
more ambitious project designed to identify some optimal stirring protocol (using
least energy, say). First, once we have selected a protocol with a given topology, it
remains to tune parameters such as ain and r . Simple reasoning shows that these can
significantly affect the energy requirements of the device, for if the internal cylinders
lie close together then the power input is large and the region of good mixing is
presumably correspondingly small. Alternatively, when the internal cylinders lie far
apart, their proximity to the outer boundary becomes significant, and once again the
power input becomes large. We anticipate that for a given set of internal cylinders
there exists some optimum way to execute a given braid motion, for minimum energy
input. Secondly, we note that when m = 3, the same energy is required to execute any
of the braid letters σ1, σ −1

1 , σ2, σ −1
2 using the motions described in § 3.2 (this is clear

by symmetry). However, when m > 3, cylinder exchanges taking place closer to the
outer boundary require more energy than those further away, so the choice of braid
word itself can influence energy usage. The third consideration, alluded to in § 2.2, is
that in addition to translating the internal cylinders, we may also rotate them about
their respective axes (or, indeed, the external cylinder about its axis), in an attempt
to reduce the power input during cylinder exchanges.
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6. Conclusions
We have examined through numerical simulation the generation of ‘topological

chaos’ in a batch stirring device (Boyland et al. 2000). The device consists of a
number of stirring rods whose positions are successively interchanged in a ‘plaiting’
motion, the topology of which is alone sufficient to determine a certain material
stretch rate that can be achieved in a corresponding two-dimensional chaotic fluid
flow. This stretch rate is independent of the fluid properties, and of the exact cylinder
motions used to achieve the interchanges.

In any practical implementation of the device, however, the theory does not indicate
the actual stretch rate that can be achieved, nor does it indicate the extent of the
flow domain in which the greatest stretching takes place. To address such issues, we
proposed two models for the fluid velocity field: inviscid and highly viscous. Through
a complex series solution, we have been able numerically to simulate stirring protocols
with various topologies. Our algorithm is simpler, faster, more accurate and requires
less storage than alternative finite-element or finite-difference approaches. We have
applied our algorithm to perform dye-advection and stretch-rate calculations, and our
results agree well with the stretch rates computed by Boyland et al. (2000). Effective
topologically chaotic stirring protocols can be realized with a single moving stirring
rod that loops around other stationary rods, which act as baffles, and this kind of
motion can be achieved using simple gearing. However, in a flow examined above,
the additional stretching is achieved only at great energetic cost.

The series approach implemented here is readily adapted for stirring elements whose
cross-section is not circular, by applying an appropriate local conformal mapping
from each non-circular cross-section to a circle. This mapping then modifies the
form of the corresponding terms in the expression for the streamfunction (Driscoll
& Trefethen 2002). We have in this manner carried out preliminary simulations
for stirring elements of both smooth (elliptical) and non-smooth (flat, paddle-like)
cross-section (cf. Saatdjian, Midoux & André 1994; Saatdjian & Midoux 1996, for
the former). However, even for stirring rods of circular cross-section, our series do
not straightforwardly generalize to finite Reynolds numbers, in which case other
approaches are necessary (see Vikhansky 2003).

Finally, we note that it is possible to adapt our series approach to three-dimensional
flow in a ‘static’ mixer consisting of a straight pipe containing three (or more) solid
tubes, which form a braid down the length of the pipe; fluid becomes mixed as it
travels down the pipe (see Boyland et al. 2000). Work is in progress to determine how
to arrange the internal tubes to achieve the most effective mixing.

Matthew Finn is supported by an EPSRC studentship. We are grateful to Mike
Clifford for discussing with us the practicalities of the BSD, and to Hassan Aref
for suggesting that we examine this problem. We are particularly indebted to
Nick Trefethen for generously donating his time and expertise in complex-variable
techniques and Matlab.
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